

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	Go Contacts API 0.1.10a documentation

Welcome to Go Contacts API’s documentation!

Contents:

	Go Contacts HTTP API
	Contents

	Response Format Overview

	API Authentication

	JSON Fields

	API Methods

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Praekelt Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	Go Contacts API 0.1.10a documentation

Go Contacts HTTP API

This API is to be used to gain access to Contact and Group data within Vumi Go.

The API is indended to cover the following parts of the Vumi Go functionality:

	Contacts/Groups
	Get one

	Get all

	Create one

	Update one

	Delete one

Request responses and bodies are all encoded in JSON, with the exception of
errors. Streaming requests are encoded in newline separated JSON.

Contents

	Response Format Overview

	API Authentication

	JSON Fields

	API Methods

	GET /(str:collection)/(str:object_key)

	GET /(str:collection)/

	POST /(str:collection)/

	PUT /(str:collection)/(str:object_key)

	DELETE /(str:collection)/(str:object_key)

Response Format Overview

In the case of modifying a single object, that object will be returned
formatted as JSON.

Example response (single object request):

HTTP/1.1 200 OK
{... "name": "foo" ...}

In the case of fetching multiple objects, there are two methods that can be
used. The first method, pagination, separates the data into pages. The JSON
object that is returned contains a cursor field, containing a cursor to
the next page, and a data field, which contains the list of objects.

Example response (paginate request):

HTTP/1.1 200 OK
{"cursor": ..., "data": [{...},{...},...]}

The second method, streaming, returns one JSON object per line.

Example response (streaming request):

HTTP/1.1 200 OK
{... "name": "foo" ...}
{... "name": "bar" ...}
...

Errors are returned with the relevant HTTP error code and a json object,
containing status_code, the HTTP status code, and reason, the reason
for the error.

Example response (error response):

HTTP/1.1 404 Not Found
{"status_code": 404, "reason": "Group 'bad-group' not found."}

API Authentication

Authentication is done using an OAuth bearer token.

Example request:

GET /api/contacts/ HTTP/1.1
Host: example.com
Authorization: Bearer auth-token

Example response (success):

HTTP/1.1 200 OK
{"cursor": null, "data": []}

Example response (failure):

HTTP/1.1 403 Forbidden

Example response (no authorization header):

HTTP/1.1 401 Unauthorized

JSON Fields

The following section lists the valid fields that can be specified for each of
the collections when creating and updating objects.

Contacts:

	
ANY /contacts/

	

	JSON Parameters:

		
	msisdn (string) – The MSISDN of the contact. Required to be non-null.

	groups (list) – A list of the group keys for the groups that this contact belongs to.
Defaults to an empty list.

	twitter_handle (string) – The Twitter handle of the contact. Defaults to null.

	bbm_pin (string) – The BBM pin of the contact. Defaults to null.

	extra (object) – An object of extra information stored about the contact. Defaults to {}.

	created_at (string) – The timestamp of when the contact was created. Defaults to the current date
and time. Uses the ISO 8601 format, ie. YYYY-MM-DD hh:mm:ss.

	mxit_id (string) – The MXIT ID of the contact. Defaults to null.

	dob (string) – The date of birth of the contact. Defaults to null.

	key (string) – The unique key used to identify the contact. Defaults to an automatically
generated UUID4 key.

	facebook_id (string) – The Facebook ID of the contact. Defaults to null.

	name (string) – The name of the contact. Defaults to null.

	surname (string) – The surname of the contact. Defaults to null.

	wechat_id (string) – The WeChat ID of the contact. Defaults to null.

	email_address (string) – The email address of the contact. Defaults to null.

	gtalk_id (string) – The GTalk ID of the contact. Defaults to null.

	subsription (object) – An object storing the subscription information for the contact. Defaults
to null.

Immutable contact fields:

	
ANY /contacts/

	

	JSON Parameters:

		
	$VERSION (string) – Represents the version of the contact.

	user_account (string) – The user account that the contact is linked to.

Groups

	
ANY /groups/

	

	JSON Parameters:

		
	name (string) – The name of the group. Required to be non-null.

	key (string) – The unique key used to identify the group. Defaults to an automatically
generated UUID4 key.

	query (string) – The string representing the query for a smart group. Defaults to null
representing a static group.

	created_at (string) – The timestamp of when the group was created. Defaults to the current date
and time. Uses the ISO 8601 format, ie. YYYY-MM-DD hh:mm:ss.

Immutable group fields:

	
ANY /groups/

	

	JSON Parameters:

		
	$VERSION (string) – Represents the version of the group.

	user_account (string) – The user account that the group is linked to.

API Methods

	
GET /(str: collection)/(str: object_key)

	Get a single object from the collection. Returned as JSON.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth bearer token.

	Parameters:	
	collection (str) – The collection that the user would like to access (i.e. contacts or
groups)

	object_key (str) – The key of the object that the user would like to retrieve.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – no auth token

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – bad auth token

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – contact for given key not found

Example request:

GET /api/contacts/b1498401c05c4b3aa6929204aa1e955c HTTP/1.1
Host: example.com
Authorization: Bearer auth-token

Example response (success):

HTTP/1.1 200 OK
Server: ...
Date: ...
Content-Type: text/html; charset=UTF-8
Content-Length: ...
Connection: keep-alive

{..., "key": "b1498401c05c4b3aa6929204aa1e955c", ...}

Example response (object not found):

HTTP/1.1 404 Not Found
Server: ...
Date: ...
Content-Type: application/json; charset=utf-8
Content-Length: 62
Connection: keep-alive

{"status_code": 404, "reason": "Contact 'bad-key' not found."}

	
GET /(str: collection)/

	Returns all the objects in the collection, either streamed or paginated.

	Query Parameters:

		
	query – Not implemented.

	stream (boolean) – If true, all the objects are
streamed, if false, the objects are sent in pages. Defaults to
false.

	max_results (int) – If stream is false, limits the number of objects in a page.
Defaults to server config limit. If it exceeds server config limit, the
server config limit will be used instead.

	cursor (string) – If stream is false, selects which page should be returned. Defaults
to None. If None, the first page will be returned.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth bearer token.

	Parameters:	
	collection (str) – The collection that the user would like to access (i.e. contacts or
groups)

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid query parameter usage

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – no auth token

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – bad auth token

Pagination:

	Response JSON Object:

		
	cursor (string) – Cursor to send to get the next page.

	data (list) – List of collection objects within the page.

Streaming:

	Response JSON Object:

		
	list – New line separated list of JSON objects in the collection.

Example request (paginated):

GET /api/contacts/?stream=false&max_results=1&cursor=92802q70r52s4717o4ps413s12po5o63 HTTP/1.1
Host: example.com
Authorization: Bearer auth-token

Example response (paginated):

HTTP/1.1 200 OK
Server: ...
Date: ...
Content-Type: text/html; charset=UTF-8
Content-Length: ...
Connection: keep-alive

{"cursor": ..., "data": [{..., "name": "foo", ...}]}

Example request (streaming):

GET /api/contacts/?stream=true HTTP/1.1
Host: example.com
Authorization: Bearer auth-token

Example response (streaming):

HTTP/1.1 200 OK
Server: ...
Date: ...
Content-Type: text/html; charset=UTF-8
Connection: keep-alive

{..., "name": "bar", ...}
{..., "name": "foo", ...}

	
POST /(str: collection)/

	Creates a single object in the collection.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth bearer token.

	Parameters:	
	collection (str) – The collection that the user would like to access (i.e. contacts or
groups)

	Request JSON Object:

		
	object – The data that the new object should contain.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON data

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – no auth token

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – bad auth token

	Response JSON Object:

		
	object – The object that was created.

Example request:

POST /api/contacts/ HTTP/1.1
Host: example.com
Authorization: Bearer auth-token
Content-Length: 35

{"name": "Foo", "msisdn": "+12345"}

Example response:

HTTP/1.1 200 OK
Server: ...
Date: ...
Content-Type: text/html; charset=UTF-8
Content-Length: ...
Connection: keep-alive

{..., "msisdn": "+12345", "name": "Foo", ...}

	
PUT /(str: collection)/(str: object_key)

	Updates a single object in the collection

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth bearer token.

	Parameters:	
	collection (str) – The collection that the user would like to access (i.e. contacts or
groups)

	object_key (str) – The key of the object that is to be modified.

	Request JSON Object:

		
	object – The data that the fields should be updated with.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON data

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – no auth token

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – bad auth token

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – cannot find contact or bad contact key

	Response JSON Object:

		
	object – The object that was updated, with the updated fields.

Example request:

PUT /api/contacts/1e2dea8cffde4446a119c72697c38d5b HTTP/1.1
Host: example.com
Authorization: Bearer auth-token
Content-Length: 35

{"name": "Foo", "msisdn": "+12345"}

Example response:

HTTP/1.1 200 OK
Server: ...
Date: ...
Content-Type: text/html; charset=UTF-8
Content-Length: ...
Connection: keep-alive

{..., "msisdn": "+12345", "name": "Foo", ...}

	
DELETE /(str: collection)/(str: object_key)

	Removes a single object from the collection.

	Request Headers:

		
	Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] – OAuth bearer token.

	Parameters:	
	collection (str) – The collection that the user would like to access (i.e. contacts or
groups)

	object_key (str) – The key of the object that is to be removed.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – no auth token

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – bad auth token

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – cannot find contact or bad contact key

	Response JSON Object:

		
	object – The object that was deleted.

Example request:

DELETE /api/contacts/68e456a0c8da43bea162839a9a1669c0 HTTP/1.1
Host: example.com
Authorization: Bearer auth-token

Example response:

HTTP/1.1 200 OK
Server: ...
Date: ...
Content-Type: text/html; charset=UTF-8
Content-Length: ...
Connection: keep-alive

{..., "key": "68e456a0c8da43bea162839a9a1669c0", ...}

 Copyright 2014, Praekelt Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	Go Contacts API 0.1.10a documentation

 HTTP Routing Table

 /(str:collection) |
 /contacts |
 /groups

 			

 		
 /(str:collection)	

 	
 	
 GET /(str:collection)/	

 	
 	
 GET /(str:collection)/(str:object_key)	

 	
 	
 POST /(str:collection)/	

 	
 	
 PUT /(str:collection)/(str:object_key)	

 	
 	
 DELETE /(str:collection)/(str:object_key)	

 			

 		
 /contacts	

 	
 	
 ANY /contacts/	

 			

 		
 /groups	

 	
 	
 ANY /groups/	

 Copyright 2014, Praekelt Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	Go Contacts API 0.1.10a documentation

Index

 Copyright 2014, Praekelt Foundation.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		Go Contacts API 0.1.10a documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Praekelt Foundation.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/plus.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/file.png

